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the structure L(Vλ+1) inverse limit reflection

measurability of ω1

Under ZFC, ω1 is not measurable. But the proof requires AC.

L(R) is the structure defined by constructing L on top of the reals R.

Assuming large cardinals, in L(R), ω1 is measurable and in fact the
club filter is an ultrafilter (Solovay).

In fact (assuming large cardinals), in L(R), ω1 → (ω1)ω1 (Martin).

Question: Can we generalize these facts to larger structures?

2 / 1



the structure L(Vλ+1) inverse limit reflection

measurability of ω1

Under ZFC, ω1 is not measurable. But the proof requires AC.

L(R) is the structure defined by constructing L on top of the reals R.

Assuming large cardinals, in L(R), ω1 is measurable and in fact the
club filter is an ultrafilter (Solovay).

In fact (assuming large cardinals), in L(R), ω1 → (ω1)ω1 (Martin).

Question: Can we generalize these facts to larger structures?

2 / 1



the structure L(Vλ+1) inverse limit reflection

measurability of ω1

Under ZFC, ω1 is not measurable. But the proof requires AC.

L(R) is the structure defined by constructing L on top of the reals R.

Assuming large cardinals, in L(R), ω1 is measurable and in fact the
club filter is an ultrafilter (Solovay).

In fact (assuming large cardinals), in L(R), ω1 → (ω1)ω1 (Martin).

Question: Can we generalize these facts to larger structures?

2 / 1



the structure L(Vλ+1) inverse limit reflection

measurability of ω1

Under ZFC, ω1 is not measurable. But the proof requires AC.

L(R) is the structure defined by constructing L on top of the reals R.

Assuming large cardinals, in L(R), ω1 is measurable and in fact the
club filter is an ultrafilter (Solovay).

In fact (assuming large cardinals), in L(R), ω1 → (ω1)ω1 (Martin).

Question: Can we generalize these facts to larger structures?

2 / 1



the structure L(Vλ+1) inverse limit reflection

measurability of ω1

Under ZFC, ω1 is not measurable. But the proof requires AC.

L(R) is the structure defined by constructing L on top of the reals R.

Assuming large cardinals, in L(R), ω1 is measurable and in fact the
club filter is an ultrafilter (Solovay).

In fact (assuming large cardinals), in L(R), ω1 → (ω1)ω1 (Martin).

Question: Can we generalize these facts to larger structures?

2 / 1



the structure L(Vλ+1) inverse limit reflection

the perfect set property

X ⊆ R has the perfect set property if either X is countable or X
contains a perfect set (and hence |X| = |R|).

Assuming the Axiom of Choice there is a set reals without the perfect
set property, but under ZFC every Σ1

1 set of reals has the perfect set
property.

We can generalize this result by considering sets of reals in the
structure L(R).

Assuming large cardinals, every set of reals in L(R) has the perfect set
property (Woodin).
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the structure L(Vλ+1) inverse limit reflection

the perfect set property

In fact (assuming large cardinals), all classical regularity properties
(Lebesgue measurability, property of Baire, etc.) are true for all sets of
reals in L(R).

There is in fact a fundamental regularity property called the Axiom of
Determinacy (AD) which holds in L(R).

AD is a fundamental regularity property in the sense that (for the
most part)

∀(regularity properties X)(AD → X).

Question: Can we generalize the above situation to larger structures?
That is, we want to find a larger structure with similar regularity
properties, and we want to find a ‘fundamental regularity property’.
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the structure L(Vλ+1) inverse limit reflection

the strongest large cardinals

Theorem (Kunen)

(AC) There is no (non-trivial) elementary embedding

j : V → V.

In fact for any λ there is no (non-trivial) elementary embedding

j : Vλ+2 → Vλ+2.

Definition

1 I1 is the statement: for some λ, there exists an elementary embedding

j : Vλ+1 → Vλ+1.

2 I3 is the statement: for some λ, there exists an elementary embedding

j : Vλ → Vλ.
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the structure L(Vλ+1) inverse limit reflection

the axiom I0

Definition (Woodin)

I0 is the statement: there exists a λ such that there is an elementary
embedding

j : L(Vλ+1)→ L(Vλ+1)

with crit (j) < λ.

Woodin originally introduced I0 in order to show that AD holds in L(R)
assuming large cardinals.
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the structure L(Vλ+1) inverse limit reflection

rank into rank embeddings

If j : Vλ+1 → Vλ+1 is elementary then λ is the sup of the critical sequence of
j. That is, for κ0 = crit (j) and κi+1 = j(κi) for i < ω, we have

λ = sup
i<ω

κi.

κ0

λ -

��
��
�1

j

κ1

-

��
��
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j(j)

κ2

· · ·
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the structure L(Vλ+1) inverse limit reflection

relationship with L(R)

If j : L(Vλ+1)→ L(Vλ+1) is elementary and crit (j) < λ then
cof(λ) = ω.

So L(R) = L(Vω+1) and L(Vλ+1) are both structures of the form
L(Vα+1) for α a strong limit of cofinality ω.

Furthermore, assuming AD holds in L(R), L(R) does not satisfy the
axiom of choice. And if I0 holds at λ then L(Vλ+1) does not satisfy the
axiom of choice either.

Do L(R) and L(Vλ+1) have similar structural properties? For instance
does L(Vλ+1) have similar combinatorial properties at λ+ as ω1 does in
L(R)?
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the structure L(Vλ+1) inverse limit reflection

relationship with L(R)

Theorem

Assume AD holds in L(R). Then L(R) satisfies the following:

1 ω1 is measurable. In fact the club filter is an ultrafilter on ω1 (Solovay).

2 Θ is a limit of measurable cardinals (Moschovakis).

Definition

Let Θ = Θλ = sup{α| (there exists a surjection of Vλ+1 onto α)L(Vλ+1)}.

Theorem (Woodin)

Assume I0 holds at λ. Then the following hold in L(Vλ+1).

1 λ+ is measurable.

2 Θ is a limit of measurable cardinals.
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the structure L(Vλ+1) inverse limit reflection

the club filter on λ+

1 Woodin showed that in L(Vλ+1) the club filter restricted to some
stationary set is an ultrafilter on λ+. In fact, he showed that there is a
partition 〈Tα|α < β〉 of λ+ into stationary sets such that β < λ and for
all α < β, the club filter restricted to Tα is an ultrafilter.

2 Let Sα = {β < λ+| cof(β) = α}. Question: Is the club filter restricted
to Sα an ultrafilter?

3 By results of Woodin, I0 does not imply that the the club filter
restricted to Sα is an ultrafilter for α > ω regular.

4 It is open whether or not the club filter restricted to Sω is an ultrafilter
in L(Vλ+1).

Theorem (C.)

Assume I0 at λ. Then there are no disjoint stationary subsets T1, T2 of Sω
(in V ) such that T1, T2 ∈ L(Vλ+1).
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the structure L(Vλ+1) inverse limit reflection

partition relation on λ+

Theorem (Woodin)

Suppose I0 holds at λ. Then for all α < β < ω1,

Lλ(H(λ+)) |= λ+ → (β)αλ .

1 It is open whether or not for all α < ω1,

λ+ → (λ+)αλ .

2 Since ω1-DC holds in L(Vλ+1), we have that in L(Vλ+1)

λ+ 6→ (λ+)ω1 .

So it is not clear how to define a ‘strong partition property’ for
L(Vλ+1).
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the structure L(Vλ+1) inverse limit reflection

perfect set property

Theorem (Davis)

Assume AD holds in L(R). Then every set of reals in L(R) has the perfect
set property. That is if X ⊆ R and X ∈ L(R) then either X is countable or
X contains a perfect set and hence |X| = 2ω.

Theorem (C.)

Assume I0 at λ. Then every subset X ⊆ Vλ+1 such that X ∈ L(Vλ+1) has
the λ-splitting perfect set property. That is either |X| ≤ λ or X contains a
λ-splitting perfect set and hence |X| = 2λ.
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the structure L(Vλ+1) inverse limit reflection

analog of AD for L(Vλ+1)

3 The above results point to the possibility that I0 for L(Vλ+1) is
analogous to AD for L(R).

There is a problem with this however:

Definition

For X ⊆ Vλ+1, let I0(X) be the statement that there exists an elementary
embedding

j : L(X,Vλ+1)→ L(X,Vλ+1)

with crit (j) < λ.

We have
AD → the perfect set property

but
I0(X) 9 the λ-splitting perfect set property.
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the structure L(Vλ+1) inverse limit reflection

inverse limit reflection

However there is a property called ‘inverse limit reflection’ (ILR) such
that if I0 holds at λ then L(Vλ+1) satisfies ILR. Furthermore

ILR→ the λ-splitting perfect set property.

So ILR is in this sense a better analog of AD for L(Vλ+1) than I0.
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the structure L(Vλ+1) inverse limit reflection

reflecting I3, I1, and I0

Theorem

1 (I1 reflects I3) Suppose there is Vλ+1 → Vλ+1 an elementary embedding.
Then there is a λ̄ < λ and an elementary embedding Vλ̄ → Vλ̄ (Martin).

2 (I0 reflects I1) Suppose there is j : L(Vλ+1)→ L(Vλ+1) an elementary
embedding with crit (j) < λ. Then there is a λ̄ < λ and an elementary
embedding Vλ̄+1 → Vλ̄+1 (Woodin).

3 Assume there exists j : Lλ++ω+1(Vλ+1)→ Lλ++ω+1(Vλ+1) elementary.
Then there exists a λ̄ < λ such that there is an elementary embedding
k : Lλ̄+(Vλ̄+1)→ Lλ̄+(Vλ̄+1) with crit (k) < λ̄ (Laver).

4 (I#
0 reflects I0) Assume there exists an elementary embedding

j : L(V #
λ+1)→ L(V #

λ+1)

with crit (j) < λ. Then there exists a λ̄ < λ and an elementary
embedding

k : L(Vλ̄+1)→ L(Vλ̄+1)

with crit (k) < λ̄. (C.)

Laver used a technique called ‘inverse limits’ to get his reflection result.
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the structure L(Vλ+1) inverse limit reflection

definition of inverse limits

Definition (Laver)

An inverse limit (J, 〈ji| i < ω〉) is a tuple such that the following hold:

1 For all i < ω, ji : Vλ+1 → Vλ+1 is elementary.

2 crit (j0) < crit (j1) < crit (j2) < · · · < λ.

3 supi<ω crit (ji) = λ̄ < λ.

4 J : Vλ̄+1 → Vλ+1 is defined by: for all a ∈ Vλ̄,

J(a) = lim
i→ω

(j0 ◦ · · · ◦ ji)(a) = (j0 ◦ j1 ◦ · · · )(a).

If (J, 〈ji| i < ω〉) is an inverse limit then we write

J = j0 ◦ j1 ◦ · · · .
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picture of an inverse limit
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the structure L(Vλ+1) inverse limit reflection

properties of inverse limits

There are many theorems on inverse limits which take the basic form:

property X for the embeddings ki for all i < ω

⇒ property X for K = k0 ◦ k1 ◦ · · ·

We say that property X transfers to inverse limits.

For instance for (certain) inverse limits K = k0 ◦ k1 ◦ · · · we have for
any a ∈ Vλ+1

∀i < ω(a ∈ rng ki)→ a ∈ rngK.

For j, k : Vλ+1 → Vλ+1 elementary embeddings k is a square root of j if
k(k � Vλ) = j � Vλ.

K = k0 ◦ k1 ◦ · · · is a inverse limit root of J = j0 ◦ j1 ◦ · · · if ki is a
square root of ji for all large enough i < ω.

For E a set of inverse limits, CL(E) is the set of inverse limits
J = j0 ◦ j1 ◦ · · · such that for all n < ω there is K = k0 ◦ k1 ◦ · · · ∈ E
with (k0, . . . , kn) = (j0, . . . , jn).
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the structure L(Vλ+1) inverse limit reflection

inverse limit reflection

Definition

Inverse limit reflection at α is the statement that there is a collection E of
inverse limits satisfying the following.

1 E is closed under taking inverse limit roots in the sense that for all
J ∈ E and x ∈ Vλ+1, there is K ∈ E an inverse limit root of J such
that x ∈ rngK.

2 The property ‘extension to Lα(Vλ+1)’ transfers to inverse limits on
CL(E). In fact, there are unique ᾱ and λ̄ such that for all J ∈ CL(E),
J extends to an elementary embedding

Ĵ : Lᾱ(Vλ̄+1)→ Lα(Vλ+1).

Theorem

Suppose I0 holds at λ.

1 Inverse limit reflection holds at λ+ (Laver).

2 For all α < Θλ, inverse limit reflection holds at α (C.).
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