Measures and combinatorics on λ^+

Scott Cramer

Rutgers University

Winter School in Abstract Analysis, Hejnice, 2014

<ロ> < 部> < 言> < 言> 、 言 の < で 1 / 1

• Under ZFC, ω_1 is not measurable. But the proof requires AC.

- Under ZFC, ω_1 is not measurable. But the proof requires AC.
- $L(\mathbb{R})$ is the structure defined by constructing L on top of the reals \mathbb{R} .

- Under ZFC, ω_1 is not measurable. But the proof requires AC.
- $L(\mathbb{R})$ is the structure defined by constructing L on top of the reals \mathbb{R} .
- Assuming large cardinals, in $L(\mathbb{R})$, ω_1 is measurable and in fact the club filter is an ultrafilter (Solovay).

- Under ZFC, ω_1 is not measurable. But the proof requires AC.
- $L(\mathbb{R})$ is the structure defined by constructing L on top of the reals \mathbb{R} .
- Assuming large cardinals, in $L(\mathbb{R})$, ω_1 is measurable and in fact the club filter is an ultrafilter (Solovay).
- In fact (assuming large cardinals), in $L(\mathbb{R})$, $\omega_1 \to (\omega_1)^{\omega_1}$ (Martin).

- Under ZFC, ω_1 is not measurable. But the proof requires AC.
- $L(\mathbb{R})$ is the structure defined by constructing L on top of the reals \mathbb{R} .
- Assuming large cardinals, in $L(\mathbb{R})$, ω_1 is measurable and in fact the club filter is an ultrafilter (Solovay).
- In fact (assuming large cardinals), in $L(\mathbb{R})$, $\omega_1 \to (\omega_1)^{\omega_1}$ (Martin).
- Question: Can we generalize these facts to larger structures?

X ⊆ ℝ has the *perfect set property* if either X is countable or X contains a perfect set (and hence |X| = |ℝ|).

- X ⊆ ℝ has the *perfect set property* if either X is countable or X contains a perfect set (and hence |X| = |ℝ|).
- Assuming the Axiom of Choice there is a set reals without the perfect set property, but under ZFC every Σ₁¹ set of reals has the perfect set property.

- $X \subseteq \mathbb{R}$ has the *perfect set property* if either X is countable or X contains a perfect set (and hence $|X| = |\mathbb{R}|$).
- Assuming the Axiom of Choice there is a set reals without the perfect set property, but under ZFC every Σ₁¹ set of reals has the perfect set property.
- We can generalize this result by considering sets of reals in the structure $L(\mathbb{R})$.

- X ⊆ ℝ has the *perfect set property* if either X is countable or X contains a perfect set (and hence |X| = |ℝ|).
- Assuming the Axiom of Choice there is a set reals without the perfect set property, but under ZFC every Σ₁¹ set of reals has the perfect set property.
- We can generalize this result by considering sets of reals in the structure $L(\mathbb{R})$.
- Assuming large cardinals, every set of reals in $L(\mathbb{R})$ has the perfect set property (Woodin).

• In fact (assuming large cardinals), all classical regularity properties (Lebesgue measurability, property of Baire, etc.) are true for all sets of reals in $L(\mathbb{R})$.

- In fact (assuming large cardinals), all classical regularity properties (Lebesgue measurability, property of Baire, etc.) are true for all sets of reals in $L(\mathbb{R})$.
- There is in fact a fundamental regularity property called the Axiom of Determinacy (AD) which holds in $L(\mathbb{R})$.

- In fact (assuming large cardinals), all classical regularity properties (Lebesgue measurability, property of Baire, etc.) are true for all sets of reals in $L(\mathbb{R})$.
- There is in fact a fundamental regularity property called the Axiom of Determinacy (AD) which holds in $L(\mathbb{R})$.
- AD is a fundamental regularity property in the sense that (for the most part)

 \forall (regularity properties X)($AD \rightarrow X$).

- In fact (assuming large cardinals), all classical regularity properties (Lebesgue measurability, property of Baire, etc.) are true for all sets of reals in $L(\mathbb{R})$.
- There is in fact a fundamental regularity property called the Axiom of Determinacy (AD) which holds in $L(\mathbb{R})$.
- AD is a fundamental regularity property in the sense that (for the most part)

```
\forall(regularity properties X)(AD \rightarrow X).
```

• Question: Can we generalize the above situation to larger structures? That is, we want to find a larger structure with similar regularity properties, and we want to find a 'fundamental regularity property'.

the strongest large cardinals

Theorem (Kunen)

(AC) There is no (non-trivial) elementary embedding

$$j: V \to V.$$

In fact for any λ there is no (non-trivial) elementary embedding

$$j: V_{\lambda+2} \to V_{\lambda+2}.$$

the strongest large cardinals

Theorem (Kunen)

(AC) There is no (non-trivial) elementary embedding

$$j: V \to V.$$

In fact for any λ there is no (non-trivial) elementary embedding

$$j: V_{\lambda+2} \to V_{\lambda+2}.$$

Definition

0 I_1 is the statement: for some λ , there exists an elementary embedding

$$j: V_{\lambda+1} \to V_{\lambda+1}.$$

2 I_3 is the statement: for some λ , there exists an elementary embedding

$$j: V_{\lambda} \to V_{\lambda}$$

the axiom I_0

Definition (Woodin)

 I_0 is the statement: there exists a λ such that there is an elementary embedding

$$j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$$

with crit $(j) < \lambda$.

the axiom I_0

Definition (Woodin)

 I_0 is the statement: there exists a λ such that there is an elementary embedding

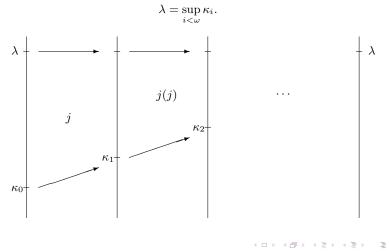
$$j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$$

with crit $(j) < \lambda$.

Woodin originally introduced I_0 in order to show that AD holds in $L(\mathbb{R})$ assuming large cardinals.

rank into rank embeddings

If $j: V_{\lambda+1} \to V_{\lambda+1}$ is elementary then λ is the sup of the critical sequence of j. That is, for $\kappa_0 = \operatorname{crit}(j)$ and $\kappa_{i+1} = j(\kappa_i)$ for $i < \omega$, we have



• If $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ is elementary and $\operatorname{crit}(j) < \lambda$ then $\operatorname{cof}(\lambda) = \omega$.

- If $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ is elementary and $\operatorname{crit}(j) < \lambda$ then $\operatorname{cof}(\lambda) = \omega$.
- So $L(\mathbb{R}) = L(V_{\omega+1})$ and $L(V_{\lambda+1})$ are both structures of the form $L(V_{\alpha+1})$ for α a strong limit of cofinality ω .

- If $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ is elementary and $\operatorname{crit}(j) < \lambda$ then $\operatorname{cof}(\lambda) = \omega$.
- So $L(\mathbb{R}) = L(V_{\omega+1})$ and $L(V_{\lambda+1})$ are both structures of the form $L(V_{\alpha+1})$ for α a strong limit of cofinality ω .
- Furthermore, assuming AD holds in $L(\mathbb{R})$, $L(\mathbb{R})$ does not satisfy the axiom of choice. And if I_0 holds at λ then $L(V_{\lambda+1})$ does not satisfy the axiom of choice either.

- If $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ is elementary and $\operatorname{crit}(j) < \lambda$ then $\operatorname{cof}(\lambda) = \omega$.
- So $L(\mathbb{R}) = L(V_{\omega+1})$ and $L(V_{\lambda+1})$ are both structures of the form $L(V_{\alpha+1})$ for α a strong limit of cofinality ω .
- Furthermore, assuming AD holds in $L(\mathbb{R})$, $L(\mathbb{R})$ does not satisfy the axiom of choice. And if I_0 holds at λ then $L(V_{\lambda+1})$ does not satisfy the axiom of choice either.
- Do $L(\mathbb{R})$ and $L(V_{\lambda+1})$ have similar structural properties? For instance does $L(V_{\lambda+1})$ have similar combinatorial properties at λ^+ as ω_1 does in $L(\mathbb{R})$?

Theorem

Assume AD holds in $L(\mathbb{R})$. Then $L(\mathbb{R})$ satisfies the following:

() ω_1 is measurable. In fact the club filter is an ultrafilter on ω_1 (Solovay).

2 Θ is a limit of measurable cardinals (Moschovakis).

Definition

Let $\Theta = \Theta_{\lambda} = \sup\{\alpha | \text{ (there exists a surjection of } V_{\lambda+1} \text{ onto } \alpha)^{L(V_{\lambda+1})} \}.$

Theorem (Woodin)

Assume I_0 holds at λ . Then the following hold in $L(V_{\lambda+1})$.

- λ^+ is measurable.
- **2** Θ is a limit of measurable cardinals.

• Woodin showed that in $L(V_{\lambda+1})$ the club filter restricted to some stationary set is an ultrafilter on λ^+ . In fact, he showed that there is a partition $\langle T_{\alpha} | \alpha < \beta \rangle$ of λ^+ into stationary sets such that $\beta < \lambda$ and for all $\alpha < \beta$, the club filter restricted to T_{α} is an ultrafilter.

- Woodin showed that in $L(V_{\lambda+1})$ the club filter restricted to some stationary set is an ultrafilter on λ^+ . In fact, he showed that there is a partition $\langle T_{\alpha} | \alpha < \beta \rangle$ of λ^+ into stationary sets such that $\beta < \lambda$ and for all $\alpha < \beta$, the club filter restricted to T_{α} is an ultrafilter.
- Let S_α = {β < λ⁺ | cof(β) = α}. Question: Is the club filter restricted to S_α an ultrafilter?

- Woodin showed that in $L(V_{\lambda+1})$ the club filter restricted to some stationary set is an ultrafilter on λ^+ . In fact, he showed that there is a partition $\langle T_{\alpha} | \alpha < \beta \rangle$ of λ^+ into stationary sets such that $\beta < \lambda$ and for all $\alpha < \beta$, the club filter restricted to T_{α} is an ultrafilter.
- Let S_α = {β < λ⁺ | cof(β) = α}. Question: Is the club filter restricted to S_α an ultrafilter?
- **③** By results of Woodin, I_0 does not imply that the club filter restricted to S_{α} is an ultrafilter for $\alpha > \omega$ regular.

- Woodin showed that in $L(V_{\lambda+1})$ the club filter restricted to some stationary set is an ultrafilter on λ^+ . In fact, he showed that there is a partition $\langle T_{\alpha} | \alpha < \beta \rangle$ of λ^+ into stationary sets such that $\beta < \lambda$ and for all $\alpha < \beta$, the club filter restricted to T_{α} is an ultrafilter.
- Let S_α = {β < λ⁺ | cof(β) = α}. Question: Is the club filter restricted to S_α an ultrafilter?
- By results of Woodin, I₀ does not imply that the club filter restricted to S_α is an ultrafilter for α > ω regular.
- It is open whether or not the club filter restricted to S_{ω} is an ultrafilter in $L(V_{\lambda+1})$.

• Woodin showed that in $L(V_{\lambda+1})$ the club filter restricted to some stationary set is an ultrafilter on λ^+ . In fact, he showed that there is a partition $\langle T_{\alpha} | \alpha < \beta \rangle$ of λ^+ into stationary sets such that $\beta < \lambda$ and for all $\alpha < \beta$, the club filter restricted to T_{α} is an ultrafilter.

Let S_α = {β < λ⁺ | cof(β) = α}. Question: Is the club filter restricted to S_α an ultrafilter?

- By results of Woodin, I₀ does not imply that the club filter restricted to S_α is an ultrafilter for α > ω regular.
- It is open whether or not the club filter restricted to S_{ω} is an ultrafilter in $L(V_{\lambda+1})$.

Theorem (C.)

Assume I_0 at λ . Then there are no disjoint stationary subsets T_1 , T_2 of S_{ω} (in V) such that $T_1, T_2 \in L(V_{\lambda+1})$.

partition relation on λ^+

Theorem (Woodin)

Suppose I_0 holds at λ . Then for all $\alpha < \beta < \omega_1$,

 $L_{\lambda}(H(\lambda^+)) \models \lambda^+ \to (\beta)^{\alpha}_{\lambda}.$

・ロト ・日下 ・ヨト ・ヨー うらぐ

11 / 1

partition relation on λ^+

Theorem (Woodin)

Suppose I_0 holds at λ . Then for all $\alpha < \beta < \omega_1$,

 $L_{\lambda}(H(\lambda^+)) \models \lambda^+ \to (\beta)^{\alpha}_{\lambda}.$

• It is open whether or not for all $\alpha < \omega_1$,

 $\lambda^+ \to (\lambda^+)^{\alpha}_{\lambda}.$

partition relation on λ^+

Theorem (Woodin)

Suppose I_0 holds at λ . Then for all $\alpha < \beta < \omega_1$,

 $L_{\lambda}(H(\lambda^+)) \models \lambda^+ \to (\beta)^{\alpha}_{\lambda}.$

• It is open whether or not for all $\alpha < \omega_1$,

 $\lambda^+ \to (\lambda^+)^{\alpha}_{\lambda}.$

2 Since ω_1 -DC holds in $L(V_{\lambda+1})$, we have that in $L(V_{\lambda+1})$

$$\lambda^+ \not\to (\lambda^+)^{\omega_1}.$$

So it is not clear how to define a 'strong partition property' for $L(V_{\lambda+1})$.

くしゃ 本語 * 本語 * 本語 * ふらく

Theorem (Davis)

Assume AD holds in $L(\mathbb{R})$. Then every set of reals in $L(\mathbb{R})$ has the perfect set property. That is if $X \subseteq \mathbb{R}$ and $X \in L(\mathbb{R})$ then either X is countable or X contains a perfect set and hence $|X| = 2^{\omega}$.

Theorem (C.)

Assume I_0 at λ . Then every subset $X \subseteq V_{\lambda+1}$ such that $X \in L(V_{\lambda+1})$ has the λ -splitting perfect set property. That is either $|X| \leq \lambda$ or X contains a λ -splitting perfect set and hence $|X| = 2^{\lambda}$.

analog of AD for $L(V_{\lambda+1})$

• The above results point to the possibility that I_0 for $L(V_{\lambda+1})$ is analogous to AD for $L(\mathbb{R})$.

analog of AD for $L(V_{\lambda+1})$

- The above results point to the possibility that I_0 for $L(V_{\lambda+1})$ is analogous to AD for $L(\mathbb{R})$.
- There is a problem with this however:

analog of AD for $L(V_{\lambda+1})$

- The above results point to the possibility that I_0 for $L(V_{\lambda+1})$ is analogous to AD for $L(\mathbb{R})$.
- There is a problem with this however:

Definition

For $X \subseteq V_{\lambda+1}$, let $I_0(X)$ be the statement that there exists an elementary embedding

$$j: L(X, V_{\lambda+1}) \to L(X, V_{\lambda+1})$$

with crit $(j) < \lambda$.

• We have

 $AD \rightarrow$ the perfect set property

but

 $I_0(X) \not\rightarrow$ the λ -splitting perfect set property.

inverse limit reflection

• However there is a property called 'inverse limit reflection' (ILR) such that if I_0 holds at λ then $L(V_{\lambda+1})$ satisfies ILR. Furthermore

ILR \rightarrow the λ -splitting perfect set property.

So ILR is in this sense a better analog of AD for $L(V_{\lambda+1})$ than I_0 .

Theorem

• (I₁ reflects I₃) Suppose there is $V_{\lambda+1} \to V_{\lambda+1}$ an elementary embedding. Then there is a $\bar{\lambda} < \lambda$ and an elementary embedding $V_{\bar{\lambda}} \to V_{\bar{\lambda}}$ (Martin).

Theorem

- (I₁ reflects I₃) Suppose there is $V_{\lambda+1} \to V_{\lambda+1}$ an elementary embedding. Then there is a $\bar{\lambda} < \lambda$ and an elementary embedding $V_{\bar{\lambda}} \to V_{\bar{\lambda}}$ (Martin).
- ◎ (I_0 reflects I_1) Suppose there is $j : L(V_{\lambda+1}) \to L(V_{\lambda+1})$ an elementary embedding with crit $(j) < \lambda$. Then there is a $\overline{\lambda} < \lambda$ and an elementary embedding $V_{\overline{\lambda}+1} \to V_{\overline{\lambda}+1}$ (Woodin).

Theorem

- (I₁ reflects I₃) Suppose there is V_{λ+1} → V_{λ+1} an elementary embedding. Then there is a λ̄ < λ and an elementary embedding V_{λ̄} → V_{λ̄} (Martin).
- ◎ (I₀ reflects I₁) Suppose there is $j : L(V_{\lambda+1}) \to L(V_{\lambda+1})$ an elementary embedding with crit(j) < λ . Then there is a $\bar{\lambda} < \lambda$ and an elementary embedding $V_{\bar{\lambda}+1} \to V_{\bar{\lambda}+1}$ (Woodin).
- Assume there exists $j: L_{\lambda^++\omega+1}(V_{\lambda+1}) \to L_{\lambda^++\omega+1}(V_{\lambda+1})$ elementary. Then there exists a $\bar{\lambda} < \lambda$ such that there is an elementary embedding $k: L_{\bar{\lambda}^+}(V_{\bar{\lambda}+1}) \to L_{\bar{\lambda}^+}(V_{\bar{\lambda}+1})$ with $crit(k) < \bar{\lambda}$ (Laver).

Laver used a technique called 'inverse limits' to get his reflection result.

Theorem

- (I₁ reflects I₃) Suppose there is V_{λ+1} → V_{λ+1} an elementary embedding. Then there is a λ̄ < λ and an elementary embedding V_{λ̄} → V_{λ̄} (Martin).
- (I₀ reflects I₁) Suppose there is $j : L(V_{\lambda+1}) \to L(V_{\lambda+1})$ an elementary embedding with crit(j) < λ . Then there is a $\overline{\lambda} < \lambda$ and an elementary embedding $V_{\overline{\lambda}+1} \to V_{\overline{\lambda}+1}$ (Woodin).
- Assume there exists $j: L_{\lambda^++\omega+1}(V_{\lambda+1}) \to L_{\lambda^++\omega+1}(V_{\lambda+1})$ elementary. Then there exists a $\bar{\lambda} < \lambda$ such that there is an elementary embedding $k: L_{\bar{\lambda}^+}(V_{\bar{\lambda}+1}) \to L_{\bar{\lambda}^+}(V_{\bar{\lambda}+1})$ with $crit(k) < \bar{\lambda}$ (Laver).
- **(** $I_0^{\#}$ reflects I_0) Assume there exists an elementary embedding

$$j: L(V_{\lambda+1}^{\#}) \to L(V_{\lambda+1}^{\#})$$

with $\operatorname{crit}(j) < \lambda$. Then there exists a $\overline{\lambda} < \lambda$ and an elementary embedding

$$k: L(V_{\bar{\lambda}+1}) \to L(V_{\bar{\lambda}+1})$$

with $crit(k) < \overline{\lambda}$. (C.)

Laver used a technique called 'inverse limits' to get his reflection result.

definition of inverse limits

Definition (Laver)

An inverse limit $(J, \langle j_i | i < \omega \rangle)$ is a tuple such that the following hold:

- For all $i < \omega, j_i : V_{\lambda+1} \to V_{\lambda+1}$ is elementary.
- $crit (j_0) < crit (j_1) < crit (j_2) < \cdots < \lambda.$
- $\ \, { \ \, { 0 \ \ \, } } \ \, J:V_{\bar{\lambda}+1} \to V_{\lambda+1} \ \, { \rm is \ defined \ \, by: \ for \ \, all \ \, a \in V_{\bar{\lambda}},$

$$J(a) = \lim_{i \to \omega} (j_0 \circ \cdots \circ j_i)(a) = (j_0 \circ j_1 \circ \cdots)(a).$$

definition of inverse limits

Definition (Laver)

An inverse limit $(J, \langle j_i | i < \omega \rangle)$ is a tuple such that the following hold:

- For all $i < \omega, j_i : V_{\lambda+1} \to V_{\lambda+1}$ is elementary.
- $u \mathfrak{sup}_{i < \omega} \operatorname{crit} (j_i) = \overline{\lambda} < \lambda.$

$$J(a) = \lim_{i \to \omega} (j_0 \circ \cdots \circ j_i)(a) = (j_0 \circ j_1 \circ \cdots)(a).$$

• If $(J, \langle j_i | i < \omega \rangle)$ is an inverse limit then we write

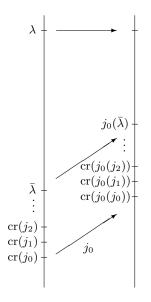
$$J = j_0 \circ j_1 \circ \cdots$$
.

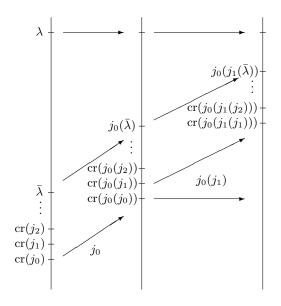
• We can rewrite an inverse limit as a direct limit as follows:

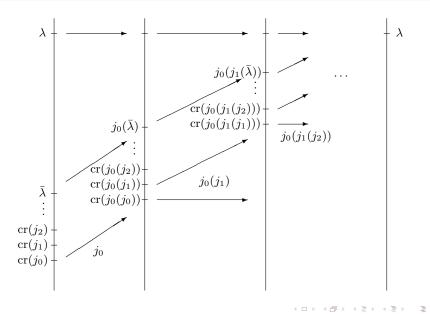
$$J = \cdots \circ j_0(j_1(j_2)) \circ j_0(j_1) \circ j_0.$$

<ロ > < 回 > < 巨 > < 巨 > < 巨 > 三 の Q () 16 / 1 the structure $L(V_{\lambda+1})$

inverse limit reflection







• There are many theorems on inverse limits which take the basic form:

property X for the embeddings k_i for all $i < \omega$ \Rightarrow property X for $K = k_0 \circ k_1 \circ \cdots$

We say that property X *transfers* to inverse limits.

• There are many theorems on inverse limits which take the basic form:

property X for the embeddings k_i for all $i < \omega$ \Rightarrow property X for $K = k_0 \circ k_1 \circ \cdots$

We say that property X *transfers* to inverse limits.

• For instance for (certain) inverse limits $K = k_0 \circ k_1 \circ \cdots$ we have for any $a \in V_{\lambda+1}$

 $\forall i < \omega (a \in \operatorname{rng} k_i) \to a \in \operatorname{rng} K.$

• There are many theorems on inverse limits which take the basic form:

property X for the embeddings k_i for all $i < \omega$ \Rightarrow property X for $K = k_0 \circ k_1 \circ \cdots$

We say that property X *transfers* to inverse limits.

• For instance for (certain) inverse limits $K = k_0 \circ k_1 \circ \cdots$ we have for any $a \in V_{\lambda+1}$

$$\forall i < \omega(a \in \operatorname{rng} k_i) \to a \in \operatorname{rng} K.$$

• For $j, k: V_{\lambda+1} \to V_{\lambda+1}$ elementary embeddings k is a square root of j if $k(k \upharpoonright V_{\lambda}) = j \upharpoonright V_{\lambda}$.

• There are many theorems on inverse limits which take the basic form:

property X for the embeddings k_i for all $i < \omega$ \Rightarrow property X for $K = k_0 \circ k_1 \circ \cdots$

We say that property X *transfers* to inverse limits.

• For instance for (certain) inverse limits $K = k_0 \circ k_1 \circ \cdots$ we have for any $a \in V_{\lambda+1}$

$$\forall i < \omega (a \in \operatorname{rng} k_i) \to a \in \operatorname{rng} K.$$

- For $j, k: V_{\lambda+1} \to V_{\lambda+1}$ elementary embeddings k is a square root of j if $k(k \upharpoonright V_{\lambda}) = j \upharpoonright V_{\lambda}$.
- $K = k_0 \circ k_1 \circ \cdots$ is a *inverse limit root* of $J = j_0 \circ j_1 \circ \cdots$ if k_i is a square root of j_i for all large enough $i < \omega$.

• There are many theorems on inverse limits which take the basic form:

property X for the embeddings k_i for all $i < \omega$ \Rightarrow property X for $K = k_0 \circ k_1 \circ \cdots$

We say that property X *transfers* to inverse limits.

• For instance for (certain) inverse limits $K = k_0 \circ k_1 \circ \cdots$ we have for any $a \in V_{\lambda+1}$

$$\forall i < \omega (a \in \operatorname{rng} k_i) \to a \in \operatorname{rng} K.$$

- For $j, k: V_{\lambda+1} \to V_{\lambda+1}$ elementary embeddings k is a square root of j if $k(k \upharpoonright V_{\lambda}) = j \upharpoonright V_{\lambda}$.
- $K = k_0 \circ k_1 \circ \cdots$ is a *inverse limit root* of $J = j_0 \circ j_1 \circ \cdots$ if k_i is a square root of j_i for all large enough $i < \omega$.
- For *E* a set of inverse limits, CL(E) is the set of inverse limits $J = j_0 \circ j_1 \circ \cdots$ such that for all $n < \omega$ there is $K = k_0 \circ k_1 \circ \cdots \in E$ with $(k_0, \ldots, k_n) = (j_0, \ldots, j_n)$.

inverse limit reflection

Definition

Inverse limit reflection at α is the statement that there is a collection E of inverse limits satisfying the following.

- E is closed under taking inverse limit roots in the sense that for all $J \in E$ and $x \in V_{\lambda+1}$, there is $K \in E$ an inverse limit root of J such that $x \in \operatorname{rng} K$.
- The property 'extension to $L_{\alpha}(V_{\lambda+1})$ ' transfers to inverse limits on $\operatorname{CL}(E)$. In fact, there are unique $\bar{\alpha}$ and $\bar{\lambda}$ such that for all $J \in \operatorname{CL}(E)$, J extends to an elementary embedding

$$\hat{J}: L_{\bar{\alpha}}(V_{\bar{\lambda}+1}) \to L_{\alpha}(V_{\lambda+1}).$$

inverse limit reflection

Definition

Inverse limit reflection at α is the statement that there is a collection E of inverse limits satisfying the following.

- E is closed under taking inverse limit roots in the sense that for all $J \in E$ and $x \in V_{\lambda+1}$, there is $K \in E$ an inverse limit root of J such that $x \in \operatorname{rng} K$.
- The property 'extension to $L_{\alpha}(V_{\lambda+1})$ ' transfers to inverse limits on $\operatorname{CL}(E)$. In fact, there are unique $\bar{\alpha}$ and $\bar{\lambda}$ such that for all $J \in \operatorname{CL}(E)$, J extends to an elementary embedding

$$\hat{J}: L_{\bar{\alpha}}(V_{\bar{\lambda}+1}) \to L_{\alpha}(V_{\lambda+1}).$$

Theorem

Suppose I_0 holds at λ .

• Inverse limit reflection holds at λ^+ (Laver).

2 For all $\alpha < \Theta_{\lambda}$, inverse limit reflection holds at α (C.).